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Objective 

The objective of this presentation is to highlight some 
developments in advanced internal combustion engines, with 
particular consideration given toward novel fuels and modes of 
combustion, and their impact on potential waste heat recovery 
applications. 

Basic Message 
• For improving IC engine efficiency, thermodynamics will 

favor lower temperature exhaust and lower exhaust flow 
rates, potentially decreasing the availability of energy for 
exhaust-based waste heat recovery. 
 

• In spite of this, opportunities will still exist and available 
energy should be exploited when possible.  
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Biodiesel and Petroleum Diesel 
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When statistical differences exist, biodiesel tends 
to have a lower exhaust exergy than petroleum 
diesel for equivalent operating conditions. 
 
This can be manifested by either lower exhaust 
temperatures or lower exhaust flow rates. 



Biodiesel and Petroleum Diesel 
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Background (Low Temperature Combustion) 
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[1] Kitamura, T. et al., 2003, SAE Transactions - Journal of Fuels and Lubricants, 112(SAE Paper No. 2003-01-1789). 
[2] Kamimoto, T. et al., 1988, SAE Transactions – Journal of Engines, 97(SAE Paper No. 880423). 

Data overlaid on work adapted from [1] based on work done by [2]. 



Low Temperature Diesel Combustion 
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- Conventional Diesel Combustion 

- Low Temperature Diesel Combustion 

Low temperature combustion is able to simultaneously reduce NO and soot 
concentrations, the latter of which is the “building block” for PM. 



Combustion Effect 
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Generally, approaching “ultra-clean” combustion 
modes results in a decrease in exhaust exergy. 
 
In the case of EGR, exhaust temperature increases 
(later phased combustion), but exhaust energy flow 
rate decreases as mass flow rate decreases. 



A Challenge and an Opportunity 
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• Mostly due to combustion phasing, and in spite of its name, low temperature diesel 
combustion may actually yield higher exhaust temperatures (but lower exhaust flow 
rates) than conventional combustion. 

• One challenge facing low temperature diesel combustion is its excessively high HC 
(and CO) concentrations. But this may create an opportunity. . . 
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Exhaust Exotherm to Support Thermoelectric 

• The use of a diesel oxidation catalyst, with primary purpose to reduce low 
temperature diesel combustion hydrocarbon and carbon monoxide concentrations, 
also provides exothermic heating of the exhaust.  

• Such action could improve the combination efficiency of a clean low temperature 
diesel engine / thermoelectric system. 
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The Trend in Engine Technology 
A few examples of developed engine technology: 
 
• Gasoline direct injection (GDI) – In production 

Stratify a lean fuel/air mixture near the spark plug for ignition. Enables increased 
compression ratio due to stratified charge and leaner mixture. 
 

• Variable Displacement / Cylinder Cut-out – In production 
Disable cylinders of a multi-cylinder engine to enable more open throttle at part-
load operation. Firing cylinders still burn stoichiometric, but non-firing cylinders 
dilute exhaust thereby lowering exhaust temperature. 
 

• Homogeneous charge compression ignition – R&D 
Induct ultra-lean fuel-air mixture and, with high compression ratio, 
compressively ignite mixture. Ultra-lean mixture contributes to low combustion 
temperatures; this, along with high compression ratio, contribute to low exhaust 
temperatures. 
 

• Low Temperature Diesel Combustion – R&D 
“LTC” intends to simultaneously and substantially lower nitric oxide and 
particulate matter emissions from diesel engines. 



Conclusion 

Coupling clean low temperature diesel combustion engine with 
exhaust-based thermoelectric device can create a system with 
high efficiency, and create opportunities for further advanced 
combustion development. 



Thank you! 

Thank you for your attention! 
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Backup 

A Pie in the Sky Idea: 
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